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. Application & Future Work
, (4) Use M for meta-train, the parameter is updated as 8' = 0 — « az(ge,M) pp
O First dataset for multi-domain text recognition with 5 million images _ 00 Our method is a self-learning framework and is model-agnostic, therefore
O Five different domains: synthetic domain, document domain, street ® Use M for meta-test, the parameter is updated as 6 = § — f = - can be easily applied to any task.
view domain, handwritten domain and car license domain. _ - 91(6:D.) O Our dataset is still challenging in some domains (the average accuracy is
[1 A wide variety of length, appearance and corpus. © Use a subet of D and Dy for outer optimization, 6 = 6 —y PY: only 42.00%), therefore remains room for improvement for researchers.



